真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

關(guān)于nosql承載的信息

簡答大數(shù)據(jù)安全的特征?

大數(shù)據(jù)安全面臨著許多挑戰(zhàn),需要通過研究關(guān)鍵技術(shù)、制定安全管理策略來應(yīng)對這些挑戰(zhàn)。當前,大數(shù)據(jù)的應(yīng)用和發(fā)展面臨著許多安全問題,具體來說有以下幾個方面。(1)大數(shù)據(jù)成為網(wǎng)絡(luò)攻擊的顯著目標在網(wǎng)絡(luò)空間中,大數(shù)據(jù)是更容易被“發(fā)現(xiàn)”的大目標,承載著越來越多的關(guān)注度。一方面,大數(shù)據(jù)不僅意味著海量的數(shù)據(jù),也意味著更復雜、更敏感的數(shù)據(jù),這些數(shù)據(jù)會吸引更多的潛在攻擊者,成為更具吸引力的目標;另一方面,數(shù)據(jù)的大量聚集,使黑客一次成功的攻擊能夠獲得更多的數(shù)據(jù),無形中降低了黑客的進攻成本,增加了“收益率”。(2)大數(shù)據(jù)加大隱私泄露風險從基礎(chǔ)技術(shù)角度看,Hadoop對數(shù)據(jù)的聚合增加了數(shù)據(jù)泄露的風險。作為一個分布式系統(tǒng)架構(gòu),Hadoop可以用來應(yīng)對PB甚至ZB級的海量數(shù)據(jù)存儲;作為一個云化的平臺,Hadoop自身存在云計算面臨的安全風險,企業(yè)需要實施安全訪問機制和數(shù)據(jù)保護機制。同樣,大數(shù)據(jù)依托的基礎(chǔ)技術(shù)——NoSQL(非關(guān)系型數(shù)據(jù)庫)與當前廣泛應(yīng)用的SQL(關(guān)系型數(shù)據(jù)庫)技術(shù)不同,沒有經(jīng)過長期改進和完善,在維護數(shù)據(jù)安全方面也未設(shè)置嚴格的訪問控制和隱私管理機制。NoSQL技術(shù)還因大數(shù)據(jù)中數(shù)據(jù)來源和承載方式的多樣性,使企業(yè)很難定位和保護其中的機密信息,這是NoSQL內(nèi)在安全機制的不完善,即缺乏機密性和完整性。另外,NoSQL對來自不同系統(tǒng)、不同應(yīng)用程序及不同活動的數(shù)據(jù)進行關(guān)聯(lián),也加大了隱私泄露的風險。此外,NoSQL還允許不斷對數(shù)據(jù)記錄添加屬性,這也對數(shù)據(jù)庫管理員的安全性預見能力提出了更高的要求。從核心價值角度看,大數(shù)據(jù)的技術(shù)關(guān)鍵在于數(shù)據(jù)分析和利用,但數(shù)據(jù)分析技術(shù)的發(fā)展,勢必對用戶隱私產(chǎn)生極大威脅。

為聞喜等地區(qū)用戶提供了全套網(wǎng)頁設(shè)計制作服務(wù),及聞喜網(wǎng)站建設(shè)行業(yè)解決方案。主營業(yè)務(wù)為成都做網(wǎng)站、成都網(wǎng)站設(shè)計、聞喜網(wǎng)站設(shè)計,以傳統(tǒng)方式定制建設(shè)網(wǎng)站,并提供域名空間備案等一條龍服務(wù),秉承以專業(yè)、用心的態(tài)度為用戶提供真誠的服務(wù)。我們深信只要達到每一位用戶的要求,就會得到認可,從而選擇與我們長期合作。這樣,我們也可以走得更遠!

為什么海量數(shù)據(jù)場景中NoSQL越來越重要

本質(zhì)是因為:隨著互聯(lián)網(wǎng)的進一步發(fā)展與各行業(yè)信息化建設(shè)進程加快、參與者的增多,人們對軟件有了更多更新的要求,需要軟件不僅能實現(xiàn)功能,而且要求保證許多人可以共同參與使用,因而軟件所需承載的數(shù)據(jù)量和吞吐量必須達到相應(yīng)的需求。而目前的關(guān)系型數(shù)據(jù)庫在某些方面有一些缺點,導致不能滿足需要。

具體則需要對比關(guān)系型數(shù)據(jù)庫與Nosql之間的區(qū)別可以得出

關(guān)系型數(shù)據(jù)庫

關(guān)系型數(shù)據(jù)庫把所有的數(shù)據(jù)都通過行和列的二元表現(xiàn)形式表示出來。

關(guān)系型數(shù)據(jù)庫的優(yōu)勢:

1.?保持數(shù)據(jù)的一致性(事務(wù)處理)

2.由于以標準化為前提,數(shù)據(jù)更新的開銷很?。ㄏ嗤淖侄位旧隙贾挥幸惶帲?/p>

3.?可以進行Join等復雜查詢

其中能夠保持數(shù)據(jù)的一致性是關(guān)系型數(shù)據(jù)庫的最大優(yōu)勢。

關(guān)系型數(shù)據(jù)庫的不足:

不擅長的處理

1.?大量數(shù)據(jù)的寫入處理(這點尤為重要)

2.?為有數(shù)據(jù)更新的表做索引或表結(jié)構(gòu)(schema)變更

3.?字段不固定時應(yīng)用

4.?對簡單查詢需要快速返回結(jié)果的處理

--大量數(shù)據(jù)的寫入處理

讀寫集中在一個數(shù)據(jù)庫上讓數(shù)據(jù)庫不堪重負,大部分網(wǎng)站已使用主從復制技術(shù)實現(xiàn)讀寫分離,以提高讀寫性能和讀庫的可擴展性。

所以在進行大量數(shù)據(jù)操作時,會使用數(shù)據(jù)庫主從模式。數(shù)據(jù)的寫入由主數(shù)據(jù)庫負責,數(shù)據(jù)的讀入由從數(shù)據(jù)庫負責,可以比較簡單地通過增加從數(shù)據(jù)庫來實現(xiàn)規(guī)模化,但是數(shù)據(jù)的寫入?yún)s完全沒有簡單的方法來解決規(guī)?;瘑栴}。

第一,要想將數(shù)據(jù)的寫入規(guī)模化,可以考慮把主數(shù)據(jù)庫從一臺增加到兩臺,作為互相關(guān)聯(lián)復制的二元主數(shù)據(jù)庫使用,確實這樣可以把每臺主數(shù)據(jù)庫的負荷減少一半,但是更新處理會發(fā)生沖突,可能會造成數(shù)據(jù)的不一致,為了避免這樣的問題,需要把對每個表的請求分別分配給合適的主數(shù)據(jù)庫來處理。

第二,可以考慮把數(shù)據(jù)庫分割開來,分別放在不同的數(shù)據(jù)庫服務(wù)器上,比如將不同的表放在不同的數(shù)據(jù)庫服務(wù)器上,數(shù)據(jù)庫分割可以減少每臺數(shù)據(jù)庫服務(wù)器上的數(shù)據(jù)量,以便減少硬盤IO的輸入、輸出處理,實現(xiàn)內(nèi)存上的高速處理。但是由于分別存儲字不同服務(wù)器上的表之間無法進行Join處理,數(shù)據(jù)庫分割的時候就需要預先考慮這些問題,數(shù)據(jù)庫分割之后,如果一定要進行Join處理,就必須要在程序中進行關(guān)聯(lián),這是非常困難的。

--為有數(shù)據(jù)更新的表做索引或表結(jié)構(gòu)變更

在使用關(guān)系型數(shù)據(jù)庫時,為了加快查詢速度需要創(chuàng)建索引,為了增加必要的字段就一定要改變表結(jié)構(gòu),為了進行這些處理,需要對表進行共享鎖定,這期間數(shù)據(jù)變更、更新、插入、刪除等都是無法進行的。如果需要進行一些耗時操作,例如為數(shù)據(jù)量比較大的表創(chuàng)建索引或是變更其表結(jié)構(gòu),就需要特別注意,長時間內(nèi)數(shù)據(jù)可能無法進行更新。

--字段不固定時的應(yīng)用

如果字段不固定,利用關(guān)系型數(shù)據(jù)庫也是比較困難的,有人會說,需要的時候加個字段就可以了,這樣的方法也不是不可以,但在實際運用中每次都進行反復的表結(jié)構(gòu)變更是非常痛苦的。你也可以預先設(shè)定大量的預備字段,但這樣的話,時間一長很容易弄不清除字段和數(shù)據(jù)的對應(yīng)狀態(tài),即哪個字段保存有哪些數(shù)據(jù)。

--對簡單查詢需要快速返回結(jié)果的處理? (這里的“簡單”指的是沒有復雜的查詢條件)

這一點稱不上是缺點,但不管怎樣,關(guān)系型數(shù)據(jù)庫并不擅長對簡單的查詢快速返回結(jié)果,因為關(guān)系型數(shù)據(jù)庫是使用專門的sql語言進行數(shù)據(jù)讀取的,它需要對sql與越南進行解析,同時還有對表的鎖定和解鎖等這樣的額外開銷,這里并不是說關(guān)系型數(shù)據(jù)庫的速度太慢,而只是想告訴大家若希望對簡單查詢進行高速處理,則沒有必要非使用關(guān)系型數(shù)據(jù)庫不可。

NoSQL數(shù)據(jù)庫

關(guān)系型數(shù)據(jù)庫應(yīng)用廣泛,能進行事務(wù)處理和表連接等復雜查詢。相對地,NoSQL數(shù)據(jù)庫只應(yīng)用在特定領(lǐng)域,基本上不進行復雜的處理,但它恰恰彌補了之前所列舉的關(guān)系型數(shù)據(jù)庫的不足之處。

優(yōu)點:

易于數(shù)據(jù)的分散

各個數(shù)據(jù)之間存在關(guān)聯(lián)是關(guān)系型數(shù)據(jù)庫得名的主要原因,為了進行join處理,關(guān)系型數(shù)據(jù)庫不得不把數(shù)據(jù)存儲在同一個服務(wù)器內(nèi),這不利于數(shù)據(jù)的分散,這也是關(guān)系型數(shù)據(jù)庫并不擅長大數(shù)據(jù)量的寫入處理的原因。相反NoSQL數(shù)據(jù)庫原本就不支持Join處理,各個數(shù)據(jù)都是獨立設(shè)計的,很容易把數(shù)據(jù)分散在多個服務(wù)器上,故減少了每個服務(wù)器上的數(shù)據(jù)量,即使要處理大量數(shù)據(jù)的寫入,也變得更加容易,數(shù)據(jù)的讀入操作當然也同樣容易。

典型的NoSQL數(shù)據(jù)庫

臨時性鍵值存儲(memcached、Redis)、永久性鍵值存儲(ROMA、Redis)、面向文檔的數(shù)據(jù)庫(MongoDB、CouchDB)、面向列的數(shù)據(jù)庫(Cassandra、HBase)

一、 鍵值存儲

它的數(shù)據(jù)是以鍵值的形式存儲的,雖然它的速度非???,但基本上只能通過鍵的完全一致查詢獲取數(shù)據(jù),根據(jù)數(shù)據(jù)的保存方式可以分為臨時性、永久性和兩者兼具 三種。

(1)臨時性

所謂臨時性就是數(shù)據(jù)有可能丟失,memcached把所有數(shù)據(jù)都保存在內(nèi)存中,這樣保存和讀取的速度非???,但是當memcached停止時,數(shù)據(jù)就不存在了。由于數(shù)據(jù)保存在內(nèi)存中,所以無法操作超出內(nèi)存容量的數(shù)據(jù),舊數(shù)據(jù)會丟失??偨Y(jié)來說:

。在內(nèi)存中保存數(shù)據(jù)

??梢赃M行非常快速的保存和讀取處理

。數(shù)據(jù)有可能丟失

(2)永久性

所謂永久性就是數(shù)據(jù)不會丟失,這里的鍵值存儲是把數(shù)據(jù)保存在硬盤上,與臨時性比起來,由于必然要發(fā)生對硬盤的IO操作,所以性能上還是有差距的,但數(shù)據(jù)不會丟失是它最大的優(yōu)勢??偨Y(jié)來說:

。在硬盤上保存數(shù)據(jù)

??梢赃M行非??焖俚谋4婧妥x取處理(但無法與memcached相比)

。數(shù)據(jù)不會丟失

(3) 兩者兼?zhèn)?/p>

Redis屬于這種類型。Redis有些特殊,臨時性和永久性兼具。Redis首先把數(shù)據(jù)保存在內(nèi)存中,在滿足特定條件(默認是?15分鐘一次以上,5分鐘內(nèi)10個以上,1分鐘內(nèi)10000個以上的鍵發(fā)生變更)的時候?qū)?shù)據(jù)寫入到硬盤中,這樣既確保了內(nèi)存中數(shù)據(jù)的處理速度,又可以通過寫入硬盤來保證數(shù)據(jù)的永久性,這種類型的數(shù)據(jù)庫特別適合處理數(shù)組類型的數(shù)據(jù)。總結(jié)來說:

。同時在內(nèi)存和硬盤上保存數(shù)據(jù)

??梢赃M行非??焖俚谋4婧妥x取處理

。保存在硬盤上的數(shù)據(jù)不會消失(可以恢復)

。適合于處理數(shù)組類型的數(shù)據(jù)

二、面向文檔的數(shù)據(jù)庫

MongoDB、CouchDB屬于這種類型,它們屬于NoSQL數(shù)據(jù)庫,但與鍵值存儲相異。

(1)不定義表結(jié)構(gòu)

即使不定義表結(jié)構(gòu),也可以像定義了表結(jié)構(gòu)一樣使用,還省去了變更表結(jié)構(gòu)的麻煩。

(2)可以使用復雜的查詢條件

跟鍵值存儲不同的是,面向文檔的數(shù)據(jù)庫可以通過復雜的查詢條件來獲取數(shù)據(jù),雖然不具備事務(wù)處理和Join這些關(guān)系型數(shù)據(jù)庫所具有的處理能力,但初次以外的其他處理基本上都能實現(xiàn)。

三、?面向列的數(shù)據(jù)庫

Cassandra、HBae、HyperTable屬于這種類型,由于近年來數(shù)據(jù)量出現(xiàn)爆發(fā)性增長,這種類型的NoSQL數(shù)據(jù)庫尤其引入注目。

普通的關(guān)系型數(shù)據(jù)庫都是以行為單位來存儲數(shù)據(jù)的,擅長以行為單位的讀入處理,比如特定條件數(shù)據(jù)的獲取。因此,關(guān)系型數(shù)據(jù)庫也被成為面向行的數(shù)據(jù)庫。相反,面向列的數(shù)據(jù)庫是以列為單位來存儲數(shù)據(jù)的,擅長以列為單位讀入數(shù)據(jù)。

面向列的數(shù)據(jù)庫具有搞擴展性,即使數(shù)據(jù)增加也不會降低相應(yīng)的處理速度(特別是寫入速度),所以它主要應(yīng)用于需要處理大量數(shù)據(jù)的情況。另外,把它作為批處理程序的存儲器來對大量數(shù)據(jù)進行更新也是非常有用的。但由于面向列的數(shù)據(jù)庫跟現(xiàn)行數(shù)據(jù)庫存儲的思維方式有很大不同,故應(yīng)用起來十分困難。

總結(jié):關(guān)系型數(shù)據(jù)庫與NoSQL數(shù)據(jù)庫并非對立而是互補的關(guān)系,即通常情況下使用關(guān)系型數(shù)據(jù)庫,在適合使用NoSQL的時候使用NoSQL數(shù)據(jù)庫,讓NoSQL數(shù)據(jù)庫對關(guān)系型數(shù)據(jù)庫的不足進行彌補。

一直在說的高并發(fā),多少Q(mào)PS才算高并發(fā)?

首先是無狀態(tài)前端機器不足以承載請求流量,需要進行水平擴展,一般QPS是千級。 然后是關(guān)系型數(shù)據(jù)庫無法承載讀取或?qū)懭敕逯?,需要?shù)據(jù)庫橫向擴展或引入nosql,一般是千到萬級。 之后是單機nosql無法承載,需要nosql橫向擴展,一般是十萬到百萬QPS。

最后是難以單純橫向擴展nosql,比如微博就引入多級緩存架構(gòu),這種架構(gòu)一般可以應(yīng)對百萬到千萬對nosql的訪問QPS。 當然面向用戶的接口請求一般到不了這個量級,QPS遞增大多是由于讀放大造成的壓力,單也屬于高并發(fā)架構(gòu)考慮的范疇。

QPS(TPS):每秒鐘 request/事務(wù) 數(shù)量,在互聯(lián)網(wǎng)領(lǐng)域,指每秒響應(yīng)請求數(shù)吞吐量:單位時間內(nèi)處理的請求數(shù)量(通常由QPS與并發(fā)數(shù)決定);響應(yīng)時間:系統(tǒng)對一個請求做出響應(yīng)的平均時間。例如系統(tǒng)處理一個HTTP請求需要200ms,這個200ms就是系統(tǒng)的響應(yīng)時間(我認為這里應(yīng)該僅包含處理時間,網(wǎng)絡(luò)傳輸時間忽略),這里一定要注意,QPS ≠ 并發(fā)數(shù)。

高并發(fā)通常是指我們提供的系統(tǒng)服務(wù)能夠同時并行處理很多請求。并發(fā)是指,某個時刻有多少個訪問同時到來。QPS是指秒鐘響應(yīng)的請求數(shù)量。那么這里就肯容易推算出一個公式:QPS = 并發(fā)數(shù) / 平均響應(yīng)時間

如果你發(fā)現(xiàn)自己高并發(fā),一定要及時就醫(yī),尋求正規(guī)醫(yī)生的幫助。


當前題目:關(guān)于nosql承載的信息
文章出自:http://www.weahome.cn/article/hccigj.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部