真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

python實現(xiàn)激活函數(shù)的簡單介紹

如何用python激活指定窗口的輸入框,方便下一步模擬輸出

可以使用StringVar()對象來完成,把Entry的textvariable屬性設(shè)置為StringVar(),再通過StringVar()的get()和set()函數(shù)可以讀取和輸出相應(yīng)內(nèi)容,以下為測試代碼(python3.x):

莒縣ssl適用于網(wǎng)站、小程序/APP、API接口等需要進行數(shù)據(jù)傳輸應(yīng)用場景,ssl證書未來市場廣闊!成為成都創(chuàng)新互聯(lián)的ssl證書銷售渠道,可以享受市場價格4-6折優(yōu)惠!如果有意向歡迎電話聯(lián)系或者加微信:18980820575(備注:SSL證書合作)期待與您的合作!

from tkinter import *

def submit():

print(u.get())

p.set(u.get())

root = Tk()

root.title("測試")

frame = Frame(root)

frame.pack(padx=8, pady=8, ipadx=4)

lab1 = Label(frame, text="獲取:")

lab1.grid(row=0, column=0, padx=5, pady=5, sticky=W)

#綁定對象到Entry

u = StringVar()

ent1 = Entry(frame, textvariable=u)

ent1.grid(row=0, column=1, sticky='ew', columnspan=2)

lab2 = Label(frame, text="顯示:")

lab2.grid(row=1, column=0, padx=5, pady=5, sticky=W)

p = StringVar()

ent2 = Entry(frame, textvariable=p)

ent2.grid(row=1, column=1, sticky='ew', columnspan=2)

button = Button(frame, text="登錄", command=submit, default='active')

button.grid(row=2, column=1)

lab3 = Label(frame, text="")

lab3.grid(row=2, column=0, sticky=W)

button2 = Button(frame, text="退出", command=quit)

button2.grid(row=2, column=2, padx=5, pady=5)

#以下代碼居中顯示窗口

root.update_idletasks()

x = (root.winfo_screenwidth() - root.winfo_reqwidth()) / 2

y = (root.winfo_screenheight() - root.winfo_reqheight()) / 2

root.geometry("+%d+%d" % (x, y))

root.mainloop()

效果如下:

BP神經(jīng)網(wǎng)絡(luò)——Python簡單實現(xiàn)三層神經(jīng)網(wǎng)絡(luò)(Numpy)

我們將在Python中創(chuàng)建一個NeuralNetwork類,以訓(xùn)練神經(jīng)元以給出準確的預(yù)測。該課程還將具有其他幫助程序功能。

1. 應(yīng)用Sigmoid函數(shù)

我們將使用 Sigmoid函數(shù) (它繪制一條“ S”形曲線)作為神經(jīng)網(wǎng)絡(luò)的激活函數(shù)。

2. 訓(xùn)練模型

這是我們將教神經(jīng)網(wǎng)絡(luò)做出準確預(yù)測的階段。每個輸入將具有權(quán)重(正或負)。

這意味著具有大量正權(quán)重或大量負權(quán)重的輸入將對結(jié)果輸出產(chǎn)生更大的影響。

我們最初是將每個權(quán)重分配給一個隨機數(shù)。

本文參考翻譯于此網(wǎng)站 —— 原文

原來ReLU這么好用!一文帶你深度了解ReLU激活函數(shù)!

在神經(jīng)網(wǎng)絡(luò)中,激活函數(shù)負責將來自節(jié)點的加權(quán)輸入轉(zhuǎn)換為該輸入的節(jié)點或輸出的激活。ReLU 是一個分段線性函數(shù),如果輸入為正,它將直接輸出,否則,它將輸出為零。它已經(jīng)成為許多類型神經(jīng)網(wǎng)絡(luò)的默認激活函數(shù),因為使用它的模型更容易訓(xùn)練,并且通常能夠獲得更好的性能。在本文中,我們來詳細介紹一下ReLU,主要分成以下幾個部分:

1、Sigmoid 和 Tanh 激活函數(shù)的局限性

2、ReLU(Rectified Linear Activation Function)

3、如何實現(xiàn)ReLU

4、ReLU的優(yōu)點

5、使用ReLU的技巧

一個神經(jīng)網(wǎng)絡(luò)由層節(jié)點組成,并學(xué)習(xí)將輸入的樣本映射到輸出。對于給定的節(jié)點,將輸入乘以節(jié)點中的權(quán)重,并將其相加。此值稱為節(jié)點的summed activation。然后,經(jīng)過求和的激活通過一個激活函數(shù)轉(zhuǎn)換并定義特定的輸出或節(jié)點的“activation”。

最簡單的激活函數(shù)被稱為線性激活,其中根本沒有應(yīng)用任何轉(zhuǎn)換。 一個僅由線性激活函數(shù)組成的網(wǎng)絡(luò)很容易訓(xùn)練,但不能學(xué)習(xí)復(fù)雜的映射函數(shù)。線性激活函數(shù)仍然用于預(yù)測一個數(shù)量的網(wǎng)絡(luò)的輸出層(例如回歸問題)。

非線性激活函數(shù)是更好的,因為它們允許節(jié)點在數(shù)據(jù)中學(xué)習(xí)更復(fù)雜的結(jié)構(gòu) 。兩個廣泛使用的非線性激活函數(shù)是 sigmoid 函數(shù)和 雙曲正切 激活函數(shù)。

Sigmoid 激活函數(shù) ,也被稱為 Logistic函數(shù)神經(jīng)網(wǎng)絡(luò),傳統(tǒng)上是一個非常受歡迎的神經(jīng)網(wǎng)絡(luò)激活函數(shù)。函數(shù)的輸入被轉(zhuǎn)換成介于0.0和1.0之間的值。大于1.0的輸入被轉(zhuǎn)換為值1.0,同樣,小于0.0的值被折斷為0.0。所有可能的輸入函數(shù)的形狀都是從0到0.5到1.0的 s 形。在很長一段時間里,直到20世紀90年代早期,這是神經(jīng)網(wǎng)絡(luò)的默認激活方式。

雙曲正切函數(shù) ,簡稱 tanh,是一個形狀類似的非線性激活函數(shù),輸出值介于-1.0和1.0之間。在20世紀90年代后期和21世紀初期,由于使用 tanh 函數(shù)的模型更容易訓(xùn)練,而且往往具有更好的預(yù)測性能,因此 tanh 函數(shù)比 Sigmoid激活函數(shù)更受青睞。

Sigmoid和 tanh 函數(shù)的一個普遍問題是它們值域飽和了 。這意味著,大值突然變?yōu)?.0,小值突然變?yōu)?-1或0。此外,函數(shù)只對其輸入中間點周圍的變化非常敏感。

無論作為輸入的節(jié)點所提供的求和激活是否包含有用信息,函數(shù)的靈敏度和飽和度都是有限的。一旦達到飽和狀態(tài),學(xué)習(xí)算法就需要不斷調(diào)整權(quán)值以提高模型的性能。

最后,隨著硬件能力的提高,通過 gpu 的非常深的神經(jīng)網(wǎng)絡(luò)使用Sigmoid 和 tanh 激活函數(shù)不容易訓(xùn)練。在大型網(wǎng)絡(luò)深層使用這些非線性激活函數(shù)不能接收有用的梯度信息。錯誤通過網(wǎng)絡(luò)傳播回來,并用于更新權(quán)重。每增加一層,錯誤數(shù)量就會大大減少。這就是所謂的 消失梯度 問題,它能有效地阻止深層(多層)網(wǎng)絡(luò)的學(xué)習(xí)。

雖然非線性激活函數(shù)的使用允許神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)復(fù)雜的映射函數(shù),但它們有效地阻止了學(xué)習(xí)算法與深度網(wǎng)絡(luò)的工作。在2000年代后期和2010年代初期,通過使用諸如波爾茲曼機器和分層訓(xùn)練或無監(jiān)督的預(yù)訓(xùn)練等替代網(wǎng)絡(luò)類型,這才找到了解決辦法。

為了訓(xùn)練深層神經(jīng)網(wǎng)絡(luò), 需要一個激活函數(shù)神經(jīng)網(wǎng)絡(luò),它看起來和行為都像一個線性函數(shù),但實際上是一個非線性函數(shù),允許學(xué)習(xí)數(shù)據(jù)中的復(fù)雜關(guān)系 。該函數(shù)還必須提供更靈敏的激活和輸入,避免飽和。

因此,ReLU出現(xiàn)了, 采用 ReLU 可以是深度學(xué)習(xí)革命中為數(shù)不多的里程碑之一 。ReLU激活函數(shù)是一個簡單的計算,如果輸入大于0,直接返回作為輸入提供的值;如果輸入是0或更小,返回值0。

我們可以用一個簡單的 if-statement 來描述這個問題,如下所示:

對于大于零的值,這個函數(shù)是線性的,這意味著當使用反向傳播訓(xùn)練神經(jīng)網(wǎng)絡(luò)時,它具有很多線性激活函數(shù)的理想特性。然而,它是一個非線性函數(shù),因為負值總是作為零輸出。由于矯正函數(shù)在輸入域的一半是線性的,另一半是非線性的,所以它被稱為 分段線性函數(shù)(piecewise linear function ) 。

我們可以很容易地在 Python 中實現(xiàn)ReLU激活函數(shù)。

我們希望任何正值都能不變地返回,而0.0或負值的輸入值將作為0.0返回。

下面是一些修正的線性激活函數(shù)的輸入和輸出的例子:

輸出如下:

我們可以通過繪制一系列的輸入和計算出的輸出,得到函數(shù)的輸入和輸出之間的關(guān)系。下面的示例生成一系列從 -10到10的整數(shù),并計算每個輸入的校正線性激活,然后繪制結(jié)果。

運行這個例子會創(chuàng)建一個圖,顯示所有負值和零輸入都突變?yōu)?.0,而正輸出則返回原樣:

ReLU函數(shù)的導(dǎo)數(shù)是斜率。負值的斜率為0.0,正值的斜率為1.0。

傳統(tǒng)上,神經(jīng)網(wǎng)絡(luò)領(lǐng)域已經(jīng)不能是任何不完全可微的激活函數(shù),而ReLU是一個分段函數(shù)。從技術(shù)上講,當輸入為0.0時,我們不能計算ReLU的導(dǎo)數(shù),但是,我們可以假設(shè)它為0。

tanh 和 sigmoid 激活函數(shù)需要使用指數(shù)計算, 而ReLU只需要max(),因此他 計算上更簡單,計算成本也更低 。

ReLU的一個重要好處是,它能夠輸出一個真正的零值 。這與 tanh 和 sigmoid 激活函數(shù)不同,后者學(xué)習(xí)近似于零輸出,例如一個非常接近于零的值,但不是真正的零值。這意味著負輸入可以輸出真零值,允許神經(jīng)網(wǎng)絡(luò)中的隱層激活包含一個或多個真零值。這就是所謂的稀疏表示,是一個理想的性質(zhì),在表示學(xué)習(xí),因為它可以加速學(xué)習(xí)和簡化模型。

ReLU看起來更像一個線性函數(shù),一般來說,當神經(jīng)網(wǎng)絡(luò)的行為是線性或接近線性時,它更容易優(yōu)化 。

這個特性的關(guān)鍵在于,使用這個激活函數(shù)進行訓(xùn)練的網(wǎng)絡(luò)幾乎完全避免了梯度消失的問題,因為梯度仍然與節(jié)點激活成正比。

ReLU的出現(xiàn)使得利用硬件的提升和使用反向傳播成功訓(xùn)練具有非線性激活函數(shù)的深層多層網(wǎng)絡(luò)成為可能 。

很長一段時間,默認的激活方式是Sigmoid激活函數(shù)。后來,Tanh成了激活函數(shù)。 對于現(xiàn)代的深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),默認的激活函數(shù)是ReLU激活函數(shù) 。

ReLU 可以用于大多數(shù)類型的神經(jīng)網(wǎng)絡(luò), 它通常作為多層感知機神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的激活函數(shù) ,并且也得到了許多論文的證實。傳統(tǒng)上,LSTMs 使用 tanh 激活函數(shù)來激活cell狀態(tài),使用 Sigmoid激活函數(shù)作為node輸出。 而ReLU通常不適合RNN類型網(wǎng)絡(luò)的使用。

偏置是節(jié)點上具有固定值的輸入,這種偏置會影響激活函數(shù)的偏移,傳統(tǒng)的做法是將偏置輸入值設(shè)置為1.0。當在網(wǎng)絡(luò)中使用 ReLU 時, 可以將偏差設(shè)置為一個小值,例如0.1 。

在訓(xùn)練神經(jīng)網(wǎng)絡(luò)之前,網(wǎng)絡(luò)的權(quán)值必須初始化為小的隨機值。當在網(wǎng)絡(luò)中使用 ReLU 并將權(quán)重初始化為以零為中心的小型隨機值時,默認情況下,網(wǎng)絡(luò)中一半的單元將輸出零值。有許多啟發(fā)式方法來初始化神經(jīng)網(wǎng)絡(luò)的權(quán)值,但是沒有最佳權(quán)值初始化方案。 何愷明的文章指出Xavier 初始化和其他方案不適合于 ReLU ,對 Xavier 初始化進行一個小的修改,使其適合于 ReLU,提出He Weight Initialization,這個方法更適用于ReLU 。

在使用神經(jīng)網(wǎng)絡(luò)之前對輸入數(shù)據(jù)進行縮放是一個很好的做法。這可能涉及標準化變量,使其具有零均值和單位方差,或者將每個值歸一化為0到1。如果不對許多問題進行數(shù)據(jù)縮放,神經(jīng)網(wǎng)絡(luò)的權(quán)重可能會增大,從而使網(wǎng)絡(luò)不穩(wěn)定并增加泛化誤差。 無論是否在網(wǎng)絡(luò)中使用 ReLU,這種縮放輸入的良好實踐都適用。

ReLU 的輸出在正域上是無界的。這意味著在某些情況下,輸出可以繼續(xù)增長。因此,使用某種形式的權(quán)重正則化可能是一個比較好的方法,比如 l1或 l2向量范數(shù)。 這對于提高模型的稀疏表示(例如使用 l 1正則化)和降低泛化誤差都是一個很好的方法 。

.


文章標題:python實現(xiàn)激活函數(shù)的簡單介紹
鏈接URL:http://www.weahome.cn/article/hcdiph.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部